Translation of non-capped mRNAs in a eukaryotic cell-free system: acceleration of initiation rate in the course of polysome formation

نویسندگان

  • Olga M. Alekhina
  • Konstantin S. Vassilenko
  • Alexander S. Spirin
چکیده

Real-time monitoring of the translation of non-capped luciferase mRNA in a wheat germ cell-free system has been performed by continuous in situ measurement of the luminescence increase in the translation mixture. The phenomenon of acceleration of translation has been revealed. It has been shown that the acceleration is accompanied by the loading of translating polysomes with additional ribosomes, and thus is caused mainly by a rise in the initiation rate, rather than the stimulation of elongation or the involvement of additional mRNA molecules in translation. The acceleration requires a sufficient concentration of mRNA and depends on the sequence of the 5' untranslated region (UTR). It can be abolished by the addition of excess cap analog (m(7)GpppGm). As the acceleration does not depend on the preliminary translation of other mRNAs in the same extract, the conclusion has been made that the effect is not due to activation of the ribosome population or other components of the system during translation, but rather it is the consequence of intra-polysomal events. The acceleration observed is discussed in terms of the model of two overlapping initiation pathways in eukaryotic polysomes: translation of non-capped mRNAs starts with eIF4F-independent initiation at 5' UTR, and after the formation of sufficiently loaded polysomes, they rearrange in such a way that a mechanism of re-initiation of terminating ribosomes switches on. The eIF4F-mediated circularization of polysomes may be considered as a possible event that leads to the re-initiation switch and the resultant acceleration effect.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Purification of Saccharomyces cerevisiae eIF4E/eIF4G/Pab1p Complex with Capped mRNA

Protein synthesis is one of the most complex cellular processes, involving numerous translation components that interact in multiple sequential steps. The most complex stage in protein synthesis is the initiation process. The basal set of factors required for translation initiation has been determined, and biochemical, genetic, and structural studies are now beginning to reveal details of their...

متن کامل

Initiation factor eIF-4B (IF-M3)-dependent recognition and translation of capped versus uncapped eukaryotic mRNAs.

Translation of capped and uncapped eukaryotic mRNAs is stimulated by addition of eIF-4B to an mRNA-dependent reticulocyte lysate system. m7G5 ppp inhibits translation of capped but not uncapped mRNAs and reduces translation of capped vaccinia mRNA to the level obtained with uncapped vaccinia mRNA. Exogenous eIF-4B but no other initiation factor reverses inhibition of protein synthesis by m7G5'p...

متن کامل

Different mechanisms preserve translation of programmed cell death 8 and JunB in virus-infected endothelial cells.

OBJECTIVE Translation initiation of eukaryotic mRNAs typically occurs by cap-dependent ribosome scanning mechanism. However, certain mRNAs are translated by ribosome assembly at internal ribosome entry sites (IRESs). Whether IRES-mediated translation occurs in stressed primary human endothelial cells (ECs) is unknown. METHODS AND RESULTS We performed microarray analysis of polyribosomal mRNA ...

متن کامل

Igbp1 is part of a positive feedback loop in stem cell factor-dependent, selective mRNA translation initiation inhibiting erythroid differentiation.

Stem cell factor (SCF)-induced activation of phosphoinositide-3-kinase (PI3K) is required for transient amplification of the erythroblast compartment. PI3K stimulates the activation of mTOR (target of rapamycin) and subsequent release of the cap-binding translation initiation factor 4E (eIF4E) from the 4E-binding protein 4EBP, which controls the recruitment of structured mRNAs to polysomes. Enh...

متن کامل

Spatial and temporal translational control of germ cell mRNAs mediated by the eIF4E isoform IFE-1.

Regulated mRNA translation is vital for germ cells to produce new proteins in the spatial and temporal patterns that drive gamete development. Translational control involves the de-repression of stored mRNAs and their recruitment by eukaryotic initiation factors (eIFs) to ribosomes. C. elegans expresses five eIF4Es (IFE-1-IFE-5); several have been shown to selectively recruit unique pools of mR...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2007